

- * optic nerve conduit for image information to brain; can respond to light variations in \$\frac{1}{30} \frac{1}{60}\$ second
- * lens is flexible and shape is changed by tension applied by attached muscles

power of lens	distance to object	muscle activity
20 D	00	relaxed
30 D	near (~20cm)	active

accommodation (of a lens) - the adjustment of the lens between near and far objects

note difference

camera

* lens shape fixed

* image distance di varied

eye

* image distance fixed

* lens shape changed

near point - the minimum do for which an object can be properly focused on the retina; depending on a person's age, the normal range is from 10cm to 1.0 m.

far point - the maximum do for which an object can be properly focused on the retina; the normally "good" value would be 00.

near sightedness (myopia) - condition
in which a person's far point
is not at ∞, but nearer; very
distant objects cannot be focused on the retina; this is
due to (1) a lens that cannot become "thin" enough, or (2) a
"long" eye

farsightedness (hyperopia) - condition in which a person's far point may be at 00, but there near point is farther out than some appropriate value; this is due to: (1) the lens not being able to assume enough curvature, on (2) a "short" eye.

normal

* correct with a converging lens

The far point of a person with myopia is 78 cm, and his near point is 23 cm. What power must the corrective lens have if it is to correct his far point > 00? How will the correction change his near point? Assume the lens will be 3 cm in front of the eye.

astigmatism - a vision defect in which a point source cannot be focused to a point because of the cornea or the lens being non-spherical; usually corrected by a lens with a cylindrically modified surface.

magnifying glass (simple microscope)

0 = angular size of image

$$\theta = + a n^{-1} \frac{y}{d_i} = \frac{M y_0}{d_i}$$

(near point) angular magnification
$$\rightarrow$$
 $m = \frac{\theta}{\theta_n}$

$$m \approx \frac{M y_0 / y_0}{di} = \frac{M dn}{di} = \frac{di}{do} \frac{dn}{di} = \frac{dn}{do}$$

lateral magnification

(use magnitude only)

thus
$$m \approx \frac{dn}{do}$$
 seems to imply that m can be made arbitrarily large if do is made arbitrarily small!

* what's wrong with this?

* If image is to be located at near point, $d_i = d_n$ and $d_o = \frac{d_n f}{d_n - f}$... substitute into $m \approx \frac{d_n}{d_o}$ to get

$$m \approx 1 + \frac{dn}{f}$$
 where object must be placed at $d_0 = \frac{dnf}{dn-f}$

* if image is to be located at di=00, then

$$m \approx \frac{dn}{f}$$

eg Use a converging lens w/ f= 12 cm as a magnifying glass. If your near point is 15 cm, find the lens's maximum angular magnification. Find the magnification for relaxed eye viewing.

eg A compound microscope has an objective lens w/ a focal length of 10mm and an eyepiece w/ a focal length of 4.0 cm. The lenses are fixed at 20 cm apart in the barrel. Determine the approximate total magnification for the microscope.

refracting telescopes (refractors)

* Galileo built in 1609 after hearing about similar instrument built by H. Lipschey (Dutch)

reflecting telescopes (reflectors)

hybrid telescope

* triad dots consisting of 3 phosphors (RGB) are used to produce color images

